首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   740篇
  免费   41篇
  国内免费   2篇
  2023年   9篇
  2022年   12篇
  2021年   60篇
  2020年   21篇
  2019年   27篇
  2018年   25篇
  2017年   24篇
  2016年   49篇
  2015年   34篇
  2014年   49篇
  2013年   65篇
  2012年   55篇
  2011年   48篇
  2010年   25篇
  2009年   22篇
  2008年   34篇
  2007年   27篇
  2006年   27篇
  2005年   31篇
  2004年   26篇
  2003年   18篇
  2002年   22篇
  2001年   4篇
  2000年   9篇
  1999年   4篇
  1997年   2篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1991年   2篇
  1989年   5篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
  1964年   1篇
排序方式: 共有783条查询结果,搜索用时 31 毫秒
41.
Heterotaxy, a birth defect involving left-right patterning defects, and primary ciliary dyskinesia (PCD), a sinopulmonary disease with dyskinetic/immotile cilia in the airway are seemingly disparate diseases. However, they have an overlapping genetic etiology involving mutations in cilia genes, a reflection of the common requirement for motile cilia in left-right patterning and airway clearance. While PCD is a monogenic recessive disorder, heterotaxy has a more complex, largely non-monogenic etiology. In this study, we show mutations in the novel dynein gene DNAH6 can cause heterotaxy and ciliary dysfunction similar to PCD. We provide the first evidence that trans-heterozygous interactions between DNAH6 and other PCD genes potentially can cause heterotaxy. DNAH6 was initially identified as a candidate heterotaxy/PCD gene by filtering exome-sequencing data from 25 heterotaxy patients stratified by whether they have airway motile cilia defects. dnah6 morpholino knockdown in zebrafish disrupted motile cilia in Kupffer’s vesicle required for left-right patterning and caused heterotaxy with abnormal cardiac/gut looping. Similarly DNAH6 shRNA knockdown disrupted motile cilia in human and mouse respiratory epithelia. Notably a heterotaxy patient harboring heterozygous DNAH6 mutation was identified to also carry a rare heterozygous PCD-causing DNAI1 mutation, suggesting a DNAH6/DNAI1 trans-heterozygous interaction. Furthermore, sequencing of 149 additional heterotaxy patients showed 5 of 6 patients with heterozygous DNAH6 mutations also had heterozygous mutations in DNAH5 or other PCD genes. We functionally assayed for DNAH6/DNAH5 and DNAH6/DNAI1 trans-heterozygous interactions using subthreshold double-morpholino knockdown in zebrafish and showed this caused heterotaxy. Similarly, subthreshold siRNA knockdown of Dnah6 in heterozygous Dnah5 or Dnai1 mutant mouse respiratory epithelia disrupted motile cilia function. Together, these findings support an oligogenic disease model with broad relevance for further interrogating the genetic etiology of human ciliopathies.  相似文献   
42.
The present study was conducted to elucidate the role of phytobeneficial bacteria to control the cellular oxidative damage in maize (Zea mays L.) plants caused by salinity. Bacteria were isolated from the rhizosphere of kallar grass (Leptochloa fusca L.) through serial dilution method and taxonomically identified on the basis of their 16S ribosomal RNA gene sequencing. In vitro phosphate solubilization, indole-3-acetic acid (IAA) synthesis, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were evaluated by solubilization index measurement, colorimetric method, and turbidity assay, respectively. In the pot experiment, the impact of single and mixed inoculation of these strains at four levels (0, 50, 100, and 200 mM) of salt stress was evaluated in terms of growth and physiological response of maize plants to salinity. The bacterial strains (STN-1, STN-5, and STN-14) were taxonomically classified as Staphylococcus spp. At 5% NaCl level, the strains demonstrated substantial potential for phosphate solubilization, ACC deaminase activity, and IAA production both with and without tryptophan. The inoculation of strains STN-1, STN-5, and mixed inoculation resulted in substantial growth improvement of maize plants along with increased antioxidant enzyme activity and decreased levels of reactive oxygen species. In addition, single inoculation of STN-1 and STN-5 along with mixed inoculation augmented the uptake of N, P, K, and Ca+2 and reduced Na+ uptake. Current results demonstrated that the strains STN-1 and STN-5 modulated stress-responsive mechanisms and regulated ion balance in induced salinity to promote maize growth.  相似文献   
43.
Bioprocess and Biosystems Engineering - Polyhydroxyalkanoates (PHAs) are biological plastics that are sustainable alternative to synthetic ones. Numerous microorganisms have been identified as PHAs...  相似文献   
44.
Sex ratio biases are often inconsistent, both among and within species and populations. While some of these inconsistencies may be due to experimental design, much of the variation remains inexplicable. Recent research suggests that an exclusive focus on mothers may account for some of the inconsistency, with an increasing number of studies showing variation in sperm sex ratios and seminal fluids. Using fluorescent in‐situ hybridization, we show a significant population‐level Y‐chromosome bias in the spermatozoa of wild tammar wallabies, but with significant intraindividual variation between males. We also show a population‐level birth sex ratio trend in the same direction toward male offspring, but a weaning sex ratio that is significantly female‐biased, indicating that males are disproportionately lost during lactation. We hypothesize that sexual conflict between parents may cause mothers to adjust offspring sex ratios after birth, through abandonment of male pouch young and reactivation of diapaused embryos. Further research is required in a captive, controlled setting to understand what is driving and mechanistically controlling sperm sex ratio and offspring sex ratio biases and to understand the sexually antagonistic relationship between mothers and fathers over offspring sex. These results extend beyond sex allocation, as they question studies of population processes that assume equal input of sex chromosomes from fathers, and will also assist with future reproduction studies for management and conservation of marsupials.  相似文献   
45.
46.
Despite a long history of development, diagnostic tools for in vivo regional assessment of lungs in patients with pulmonary emphysema are not yet readily available. Recently, a new imaging technique, in vivo lung morphometry, was introduced by our group. This technique is based on MRI measurements of diffusion of hyperpolarized (3)He gas in lung air spaces and provides quantitative in vivo tomographic information on lung microstructure at the level of the acinar airways. Compared with standard diffusivity measurements that strongly depend on pulse sequence parameters (mainly diffusion time), our approach evaluates a "hard number," the average acinar airway radius. For healthy dogs, we find here a mean acinar airway radius of approximately 0.3 mm compared with 0.36 mm in healthy humans. The purpose of the present study is the application of this technique for quantification of emphysema progression in dogs with experimentally induced disease. The diffusivity measurements and resulting acinar airway geometrical characteristics were correlated with the local lung density and local lung-specific air volume calculated from quantitative computed tomography data obtained on the same dogs. The results establish an important association between the two modalities. The observed sensitivity of our method to emphysema progression suggests that this technique has potential for the diagnosis of emphysema and tracking of disease progression or improvement via a pharmaceutical intervention.  相似文献   
47.
48.
Identification of signals for systemic adaption of hormonal regulation would help to understand the crosstalk between cells and environmental cues contributing to growth, metabolic homeostasis and development. Physiological states are controlled by precise pulsatile hormonal release, including endocrine steroids in human and ecdysteroids in insects. We show in Drosophila that regulation of genes that control biosynthesis and signaling of the steroid hormone ecdysone, a central regulator of developmental progress, depends on the extracellular matrix protein Obstructor-A (Obst-A). Ecdysone is produced by the prothoracic gland (PG), where sensory neurons projecting axons from the brain integrate stimuli for endocrine control. By defining the extracellular surface, Obst-A promotes morphogenesis and axonal growth in the PG. This process requires Obst-A-matrix reorganization by Clathrin/Wurst-mediated endocytosis. Our data identifies the extracellular matrix as essential for endocrine ring gland function, which coordinates physiology, axon morphogenesis, and developmental programs. As Obst-A and Wurst homologs are found among all arthropods, we propose that this mechanism is evolutionary conserved.  相似文献   
49.
Eucalyptus grandis is the most widely planted tree species worldwide and can face severe drought during the initial months after planting because the root system is developing. A complete randomized design was used to study the effects of two water regimes (well‐watered and water‐stressed) and phosphorus (P) applications (with and without P) on the morphological and physio‐biochemical responses of E. grandis. Drought had negative effects on the growth and metabolism of E. grandis, as indicated by changes in morphological traits, decreased net photosynthetic rates (Pn), pigment concentrations, leaf relative water contents (LRWCs), nitrogenous compounds, over‐production of reactive oxygen species (ROS) and higher lipid peroxidation. However, E. grandis showed effective drought tolerance strategies, such as reduced leaf area and transpiration rate (E), higher accumulation of soluble sugars and proline and a strong antioxidative enzyme system. P fertilization had positive effects on well‐watered seedlings due to improved growth and photosynthesis, which indicated the high P requirements during the initial E. grandis growth stage. In drought‐stressed seedlings, P application had no effects on the morphological traits, but it significantly improved the LRWC, Pn, quantum efficiency of photosystem II (Fv/Fm), chlorophyll pigments, nitrogenous compounds and reduced lipid peroxidation. P fertilization improved E. grandis seedling growth under well‐watered conditions but also ameliorated some leaf physiological traits under drought conditions. The effects of P fertilization are mainly due to the enhancement of plant N nutrition. Therefore, P can be used as a fertilizer to improve growth and production in the face of future climate change.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号